Architecture of Multi-Controller in SDN

Section W4J: SDN Transport and NFV Overview of OFC

Chen Ma
May. 08, 2015

Overview of the section

ID
Title

Authors

Affiliations

Countries:

USA (W4J.1), China (W4J.3, W4J.4), Spain and Germany (W4J.5).

Affiliations:

Network Operators: Verizon (W4J.1), China Telecom (W4J.4), Telefonica (W4J.5).

Manufacturers: Fiberhome (W4J. 3 and W4J.4), Huawei and ZTE (W4J.4), ADVA (W4J.5).

Universities and Institutes: Tsinghua (W4J.3), BUPT (W4J.4), CTTC (W4J.5)

W4J.1-Overview

SDN Transport Architecture and Challenges
Vishnu S Shukla

Verizon Technology and Planning, 60 Sylvan Road, Waltham, MA 02030 (Vishnu.shukla@verizon.com)

- Contribution
- Introduce the reference architecture and five challenges of SDN.

W4J.1-SDN Architecture

Orchestrator:

The Orchestrator is positioned between the application plane and Management/Control Plane to control the facilities of Data Center and Transport Network (TN).

W4J.1-Challenges

- Operational simplicity (On-board new clients rapidly)
- Differentiated service delivery (Automate resource allocation on the fly)
- Scalability (Support X transactions per hours)
- Continuous Availability (Disaster avoidance/ recovery)
- Legacy and multi-domain interworking.

W4J.3-Overview

Consideration of Control Entity Failure in Distributed Controlled Multi-domain Multi-vendor Optical Networks

Wangyang Liu ${ }^{1,2}$, Nan Hua ${ }^{1,2}$, Xiaoping Zheng ${ }^{1,2}$, Bingkun Zhou ${ }^{1,2}$, Xiaohui Chen ${ }^{3,4}$
1. Tsinghua National Laboratory for Information Science and Technology (TNList), Beijing, 100084, China
2. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
3. School of Communication and Information Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
4. Fiberhome Telecommunication Technologies Co, Ltd, Wuhan, 430074, China
Author email address: \{huan,xpzheng)@mail.tsinghua.edu.cn

- Contribution
- Introduce the two problems and their solutions of failed controllers.

W4J.3-Problems

- Problems
- 1. Unware of failure control entity: the statement of failed controller cannot be known by the other controllers.
- 2. Unable to release resource from influenced data plane: the information of paths are stored in the controller, so that the paths cannot be torn down in the networks.

Fig. 2 Problem statement

W4J.3-Solutions

- Problem 1,:Timeout-event-driven failure verification and diffusion scheme.
- Problem 2: NMS (Network Management System)
-agent resource releasing scheme.

Fig. 3 Timeout-event-driven failure verification and diffusion scheme

W4J.3-Results

Connection arrival rate per node: $0.2 \mathrm{~min}^{-1}$, service rate per node: $0.1 \mathrm{~min}^{-1}$

Fig. 4 Instantaneous actual load per node

Connection arrival rate per node: $0.2 \mathrm{~min}^{-1}$, service rate per node: $0.1 \mathrm{~min}^{-1}$ Average load per node: 2 Erlang, 1000 connections requests, 120 nodes

Fig. 5 Instantaneous blocking probability (increment: 2 minutes)

W4J.4-Overview

Experimental Demonstration of Hierarchical Control over Multi-Domain OTN Networks Based on Extended Openflow Protocol

Ruiquan Jing ${ }^{1}$, Chengliang Zhang ${ }^{1}$, Yiran Ma ${ }^{1}$, Junjie Li ${ }^{1}$, Xiaoli Huo ${ }^{1}$, Yongli Zha0 ${ }^{2}$, Jianrui Han ${ }^{3}$, Jiayu Wang ${ }^{4}$, Shengbo Fu ${ }^{5}$
1. China Telecom Beijing Research Institute, Beijing, China 2. Beijing University of Posts and Telecommmications, Beijing, China
3. Huawei, Shenshen, China 4.ZTE, Beijing, China 5.Fiberhome, Wuhan, China
Author e-mail address: ïngrq@ctbri.com.cn

- Contribution
- Demonstrate a control mechanism for multidomain optical network with commercial OTN equipment by using hierarchical SDN controller.

W4J.4-Architecture

- CC: connection controller
- RC: routing controller
- Parent controller has the information of each domain; domain controllers are used for setup and tear down paths.

W4J.4-Results

Figure 5 Network topology show on MDM APP

No.	Time	Destination	Protocol	Length Info
304	${ }^{\text {a } R E F}{ }^{2}$	10.130.24.10	openflow	162 Type: OFPT_FLOW_MOD
305	0.000655000	10.130.24.10	Openflow	162 Type: OFPT_FLOW_MOD
306	0.001142000	10.130.24.10	OpenFlow	162 Type: OFPT_FLOW_MOD
307	0.001787000	10.130.24.10	OpenFlow	162 Type: OFPT_FLOW_MOD
308	0.002546000	10.130.5.100	Openflow	150 Type: OFPT_FLOW_MOD
309	0.003335000	10.130.5.100	Openflow	150 Type: OFPT_FLOW_MOD
311	0.004280000	10.130.5.100	Openflow	150 Type: OFPT_FLOW_MOD
312	0.005064000	10.130.5.100	Openflow	150 Type: OFPT_FLOW_MOD
315	0.014040000	10.130.5.211	openflow	162 Type: OFPT_FLOW_MOD
316	0.015185000	10.130.5.211	Openflow	162 Type: OFPT_FLOW_MOD
349	0.267560000	10.130.5.100	Openflow	62 Type: OFPT_BARRIER_REQUEST
350	0.274711000	10.130.5.11	openflow	62 Type: OFPT_BARRIER_REPLY
353	0.300265000	10.130.5.211	Openflow	74 Type: OFPT_BARRIER_REQUEST
355	2.125475000	10.130.5.11	OpenFlow	74 Type: OFPT_BARRIER_REPLY
357	2.127389000	10.130.24.10	OpenFlow	74 Type: OFPT_BARRIER_REQUEST
358	2.128325000	10.130.5.11	Openflow	74 TyPe: OFPT BARRIER_REPLY
Figure 6 Sequence of connection setup messages				

```
No. Destination Protocol Info
```



```
    OTN Port Desc
        OTN Port Des
        Type: 2
        Port signal type: OFPOTPT_OTU2 (12)
        Reserved: 0
        M
        Remote node id: 10.130.24.3 (10.130.24.3)
No. Destination Protocol Info ION
- OpenFlow 1.3.x
    version: 1.3 (0x04)
        Type: OFPT_FLOW_MOD (14),Node id=10.130.24.1
            Length: 96 Transaction ID: }1
```

\qquad

```
            cookie: 0x000000020a821801
```

Figure 7 Extend OF packets captured with Wireshark

W4J.5-Overview

SDN/NFV orchestration for dynamic deployment of virtual SDN controllers as VNF for multi-tenant optical networks

R. Muñoz ${ }^{1}$, R. Vilalta ${ }^{1}$, R.Casellas ${ }^{1}$, R.Martínez ${ }^{1}$, T. Szyrkowiec ${ }^{2}$, A. Autenrieth ${ }^{2}$, V. López ${ }^{3}$, D. López ${ }^{3}$
${ }^{\prime}$ 'Centre Tecnologic de Telecomunicacions de Catalunya (CTTC), Castelldefels (Barcelona), Spain.
${ }^{2}$ ADVA Optical Networking, Martinsried (Munich), Germany.
${ }^{3}$ Telefónica I + D, Madrid, Spain.
raul.mmoz@cttc.es, ricard.vilalta@cttc.es, AAutenrieth@advaoptical.com, victor:lopezalvare¿@telefonica.com

- Contribution
- Propose virtualize the SDN control function and move them to the cloud.

W4J.5-Architecture

Fig. 1 a) Proposed SDN/NFV orchestration architecture for multi-tenant optical transport networks with virtual SDN controllers as VNF, b) Workflow for deploying a virtual SDN-enabled optical transport network

- Orchestrator: both the cloud and network.
- SDN controller: network.
- vSDN Manager, Cloud Controller: cloud.
- Customer SDN Controller: one VON for custom.

W4J.5-Architecture

W4J.5-Results

Av. VSDN Ctrer Setup delay		Av. connectivity provisioning delay	Av. virtual network setup delay	Av. Total deployment delay
VM creation	vSDN Crrler Conf.			
73.68	0.4 s	0.9 s	0.1 s	75 s

b)

b)

REF	NOC	VSDN	HTTP	post /controller/web/flows/fli
0.028925	vSOH	OHN	Operritow	Type: OFPT_ FLOW H00
0.029027	V50H	OHV	Openflow	Type: OFPT_BARRIER_REOUEST
5.698622	ari	VSDH	operfiow	TyPe: OFPT_BARRTER REPIY
5.707736	VSON	NOC	HTP	HTTP/1.1200 OK (text/plain)

c)

Fig. 2. a) Experimental network setup b)Wireshark capture at the NFV/SDH orchestrator when provisioning a virtual SDN-enabled optical network c) Performance evaluation in terms of setup delays d) Wireshark capture at a virtual SDN controller when provisioning of a flow.

Conclusions

- Issues for survivability of multiple controllers:
- Relationships of controllers.
- Locations of backup controllers.
- Location of path information storage, for instance, the information stored in parent controller or domain controller.

Thank you!

